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In engineering practice, real time simulation, reactor accident analysis, etc. it is often 
necessary to obtain very accurate but simple relationships between steam and water 
properties with minimum computer storage requirements. The notion of “transtkite 
element,” developed by Gordon and Hall, is used as a basis for an interpolation scheme 
which gives simple functional relationships between steam and water properties, such 
as enthalpy, considered as a function of pressure and temperature. 

1. INTR~DUOTION 

In the design and operation of nuclear and fossil fired power plants accurate 
interpolation of tabulated thermodynamic properties of steam and water are 
necessary. Since small or medium sized computers are involved, and very often 
in a real time environment, it is desirable to have the capability of retrieving good 
approximate values of these thermodynamic properties while only having to 
store a minimal amount of data. In general, steam and water properties can be 
considered as a surface in temperature-pressure+nthalpy space or in temperature- 
pressure-specific volume space, etc., and their approximation reduces to a surface 
fitting problem not totally unlike those considered in the styling of automobile 
exteriors [3, 4, 51. 

Recently, there has been great interest in developing automatic mesh generators 
for use in the finite element method. The purpose of this paper is to indicate the 
application of these techniques, especially the notion of transfinite elements [8, 91, 
to the approximation and interpolation of steam and water properties. The 
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emphasis is on the storage and computational problems encountered when small 
or medium size computers are to be used, as is the case in the application of power 
plant process computers. 

2. BACKGROUND INFORMATION 

In the design of nuclear and fossil fired power plants the use of the thermo- 
dynamic properties of steam and water is essential. These properties are published 
as a set of tables relating temperature, pressure, enthalpy, specific volume and 
entropy. Their nature is quite disjoined, since water and steam exhibit unrelated 
behavior at different temperatures and pressures. In most cases, the steam tables, 
as they are popularly known, cover the range from the freezing point (32.018”F) 
to the critical point (705.47”F) on the saturation line, and from 0 to 15,000 psia 
and 32°F to 1500°F in the compressed liquid or superheated steam region. 

This is of course a very broad range of temperatures and pressures and com- 
putationally efficient approximation is a large scale problem. Since the development 
of process control computers the necessity of the accurate but fast calculation of 
these properties became widespread. In many instances, high degree polynominals 
(sixth or seventh degree polynominals using natural logarithms and exponents) 
were used to approximate thermodynamic properties in adjacent regions [l, 21. 
In large computers, used for design purposes, very general subroutines have been 
written which use tensor product bilinear [l] and biquadratic [12] interpolation 
between the points. In many such cases virtually complete tables are stored in 
the computer memory, yielding fairly accurate but very inefficient computer 
subroutines. In process control computers working in real time environment, 
or in real time simulation, such an approach seems to be not only undesirable 
but also impossible to achieve. One should note, that the size of a process control 
computer is approximately 25 to 30 k of core while such a steam table approxima- 
tion would take approximately 25 k of core by itself. In addition to the storage 
problem, the computational time is of great importance. In an average size nuclear 
power plant simulation there are up to one half million calls of the steam table 
routines per one time step. Therefore, a compromise should be found between 
the accuracy, speed of the calculation and computer memory requirements. 

It was reported earlier [6] that univariate cubic splines were used successfully 
in the approximation of the saturation properties in the range from 70 to 700°F 
with the use of an automatic node search program. In this application six or seven 
nodes were sufficient to achieve the accuracies of about 0.1%. However, when 
the compressed liquid and superheated steam properties are needed, surface 
approximation is necessary. Due to the disjoined nature of the properties mentioned 
earlier, piecewise bivariate polynominals are ideally suited for this task. There 



TRANSPINITE INTERPOLATION OF STEAM TABLES 81 

were experiments with the use of bilinear and bicubic splines as well as the com- 
bination of cubic splines and linear interpolation [7]. However the authors feel 
that the use of blending function techniques [4, 51 which fostered the notion of 
a transfinite element, lead to more efficient, flexible and accurate schemes using 
a relatively small amount of data storage. For the convenience of the reader, some 
results developed in [8, 91 will be repeated here. 

3. BLENDING FUNCTION TECHNIQUES 

TransJinite interpolation is by definition an interpolation method in which 
the interpolant matches a given function on a nondenumerable or “transfinite” 

i yF’b(s,t), y(s,t)l 

FIG. 1. A univalent mapping 0 induces a curvilinear coordinate system on the domain 6’ and 
the interpolation-approximation problem can be described and then solved in terms of the s, t 
system. 
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set of points. This is in contrast to the “classical” multidimensional interpolation 
schemes which match (or interpolate to) the given function on a denumerable 
or finite set of points (cf. [9]). 

Ultimately, we seek interpolation schemes over curved domains, however as in 
[9] we first consider a square domain Y as in Fig. 1. Assume the curves {F(s, , t)}& 
and {F(s, tJ}j”=, are known or have been approximated to a high degree of accuracy 
(here m = 3 and n = 4). Define the projectors 8, and 8, by 

where, for example, 

W) = 
nk+i (t - fk) 

Ilk& (4 - trc> - 
(3) 

We note, that B,[a interpolates to F(si , t), 0 < i < m, 0 < t < 1 and P,[fl 
interpolates to F(s, ti), 0 < j < n, 0 < s < 1. That is, P’,[r;l = F and 9J.a = F 
for a transfinite (more than finite) number of points. 

The functions { #)) and {&(t)} are termed blending functions [4] and need 
only satisfy the cardinality conditions 

4&k> = &k 9 &ok) = hk 7 (4) 

where 6 is the Kronecker delta. Other choices for the & and & can be made [4, 5, 
9, 101. 

For bivariate interpolation, the bipolynomial or tensor product Lagrange inter- 
polation formula can be used and is given by 

Note that Bfl,[F] interpolates to F at the (m + 1) x (n + 1) points (si , tj), 
0 < i < m, 0 < j < n. In this case the precision set of the product projector is 
finite while each projector, per se, has transfinite precision set. 

The Boolean sum of the projectors [4, 51 

980 ~#I = ~#‘I + ~t[Fl- ~~P’.l (6) 

is also a projector and interpolates to F along the (m + n + 2) lines s = si , 
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0 < i < m and t = tj , 0 <j < n. 9, @ B,[fl is called the transfinite bivariate 
Lagrange interpolant [9] or in earlier terminology blended interpolant [4, 51. 

By proper choice of m, n, $, $ one obtains various transfinite interpolants. 
For sufficiently smooth functions error bounds have been derived for such 
schemes [8, 9, lo] and in particular for the Lagrange blending functions (3) we 
have PI, with II g IL = max(Q,t)E~ I ds, 01, that 

ll(F - 8, @ PJt[Fj)(k,z) Ilm < E,~E,~ 11 F(m+l*n+l) Ilm hm+“+2--k-Z (7) 

for FE C(m+l*n+l)(Y), 0 < k < m, 0 < I < n. For bilinear transfinite interpola- 
tion and FE C(2*2) this error bound yields 

II F - 9, CD ~tV’lllm d (G,)~ II F’2*2’ IL h4 (8) 

and for the biquadratic transfinite interpolation for FE C(3*3) 

II F - 8s 0 ~G’lllm < (G,)~ II F’3*3’ IL hs. (9 

Note, that in contrast, the bilinear tensor product projection would match 
the given function only at four points (four corners), the biquadratic tensor 
product projection at only nine points and the associated error bounds are 0(h2) 
and 0(h3), respectively. 

Since in engineering applications we normally deal with functions whose values 
are known only at a finite number of points, we have to approximate the univariate 
functions F(si , t) and F(s, ti) by some approximation scheme. Because of the 

FIG. 2. Enthalpy of superheated steam versus temperature and pressure (Narrow range). 
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disjoined nature of the steam and water properties, the use of piecewise poly- 
nominals, linear and cubic splines, appear to be the natural choices in this approxi- 
mation. 

Interpolation of steam and water properties in the proximity of the saturation 
line necessitates considering curved domains (cf. Fig. 2, 3, 4, 5) which can be 
handled as in [8,9] by introducing a curvilinear coordinate system on the domain & 
or equivalently mapping the domain d onto a cannonical domain Y. The construc- 
tion of univalent (one-to-one) maps U: Y -d was the subject of [S] and the 
interested reader is referred to that reference for details. Suffice to say, that for 
regions as considered in this investigation, the mappings used are univalent. 

4. DEVELOPMENT OF THE ALGORITHM 

An algorithm was developed to interpolate (approximate) one property of 
superheated steam as a function of two others. In the examples, enthalpy of 
superheated steam is calculated as a function of the pressure and temperature. 
Two different domains C? are considered. The first, consists of the temperature 
range 635.8 < T < 700°F and pressure range 2000 < P < 2500 psia. Table I 
lists the given data. As one can see, this is a very narrow range, but this region 
was used to establish a benchmark problem on which different routines. can be 
tested and their features objectively compared. The domain &’ for the second 

TABLE I 

Portion of Tabulated Data: Enthalpy for Various Values of Pressure and Temperature 

\ T P 2000 2100 2200 2300 2400 2500 

635.8 1136.7* d J J J J 
640.0 1147.1* 4 4 J 4 J 
642.7 1152.7 1128.9* 4 J J J 
649.4 1166.6 1146.1 1120.5* J d J 
650.0 1167.8* 1147.6 1122.4 J J J 
655.9 1178.2 1159.9 1138.0 1111.8* J J 
660.0 1185.5* 1168.4 1148.9 1125.5 J \/ 
662.1 1188.8 1172.2 1153.2 1130.8 1102.3* J 
668.1 1198.3 1182.9 1165.7 1146.1 1122.7 1090.7* 
670.0 1201.3* 1186.3 1169.6 1150.9 1129.1 1098.4* 
680.0 1215.6* 1202.2 1187.6 1171.5 1153.6 1132.0* 
690.0 1228.7* 1216.6 1203.6 1189.5 1174.0 1156.9* 
700.0 1240.9* 1229.9* 1218.1* 1205.5* 1191.8* 1177.0* 

* These points used to determine the entbalpy along the boundary of the trans6nite element 8. 
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example consists of a much larger portion of the steam tables consisting of the 
temperature range 80 d T < 700°F and pressure range 0.5 < P < 2500 psia. 

Wide ranges of pressure and temperature can also be handled by decomposing 
a given region into various transfinite elements, each element being handled as 
described below. The smoothness of the resulting piecewise blended surface 
approximating enthalpy of superheated steam is governed by the smoothness of 
the map C7 and the smoothness of the blending functions in (4). 

t 

2500 

‘i?TTn 

635 640 645 650 655 660 665 670 675 680 685 690 ,695 700 

TEMPERATURE (OF) 

FIG. 3. A univalent mapping 0 induces a curvilinear coordinate system on the domain 8 in 
temperature-pressure plane. Curve AB is the saturation line. 

The enthalpy of the superheated steam, when plotted in the temperature- 
pressure-enthalpy space, represents a surface as shown on Figs. 2 and 5. The ap- 
proximation problem consists of choosing temperature and pressure independently 
and then determining enthalpy. By projecting this surface to the temperature- 
pressure plane one obtains a curvilinear domain as shown for example in Fig. 3. 

Let us briefly develop some of the details of the transfinite interpolation scheme 
as given in [8] applied to the region in Fig. 3. Let B be a closed bounded simply 
connected region in the T, P-plane, whose boundary ABCD, is subdivided into 



690 - 

c 660 - 
e B 
w 670 - 
s 
s s 660 - 

t 650 - 

6110 - 

630 I I I I I I I I I I I w 
1060 1090 1100 1110 1120 113011401150 1160 1170 1180 1190 1200 1210 1220 1230 12110 1250 

ENTHALPY (BTU/LB) 

FIG. 4. Domain 8 plotted in enthalpy-temperature plane. Curve AB is saturation line. 

% 

_\j_ 

'T 
P 

FIG. 5. Enthalpy of superheated steam versus temperature and pressure (wide range). 
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four curve segments AB, BC, CD, DA. Let U(s, t) be a univalent mapping of the 
unit square Y: [0, l] x [0, l] in the s, t-plane onto the region d in the T, P-plane 

Since U is univalent and onto, the boundary of Y maps onto the boundary of Q 
and the mapping is invertible, that is, the map u: Y -+ 8 provides a unique 
correspondence between a point (s, t) E Y and its image (T, P) E b. Therefore, 
a function F(s, t) defined for (s, t) E Y will be transformed by V, treating U as 
a change of variables, and we obtain F*(T, P) 3 F(s(T, P), t(T, P)) defined for 
all (T, P) ~8. If B, @ gt[Fj is the (m, n)-degree transjinite bivariate Lagrange 
interpolant [9] it interpolates F along the lines s = si , 0 < i < m and t = tj , 
0 < j < n. If U: Y --f d is any univalent map of Y onto d then as in [4, p. 8921 
the interpolant 

and the domain d are defined to be a transfinite element. 
Since the function F* is defined for all (T, P) E d by relation F*(T, P) = F(s, t), 

then (9, @ ~#‘I)* interpolates F* along the two sets of curves in d which are 
the images under U of the family of lines s = Si and t = tj in Y, i.e. 

(9s 0 gt[CI)* (T(si 3 th f’(si 3 t>) = F*(T(si 7 t>, P(si 3 t>) i = 0, l,..., m 

(9, 0 ~#‘I)* (Tts, 4>, PO, 0 = F*G%, ~~>, J’ts, 4)) j = 0, l,..., n. 
(12) 

During the course of this work linear splines as well as cubic splines were used to 
approximate T(Si , t), P(Si , t) etc. To minimize the number of nodes the node 
search program [6] was used. 

The interpolation (approximation) problem described here is an “inverse 
problem.” The point P(s, t), T(s, t) in the domain B is known, and in order to 
use the bivariate blended interpolant 8, @ PJfl, one must determine corre- 
sponding coordinates (s, t) E Y. Once the appropriate (s, t) are known, then by 
the use of (11) one can determine B, @ B,[Fj* (T(s, t), P(s, t)). In fact, it is easy 
to see that F* can be any thermodynamic property, e.g., enthalpy, entropy, or 
specific volume. 

To test the described algorithm a digital computer program was written. In the 
first example the enthalpy of the superheated steam as a function of the temperature 
and pressure is approximated using transfinite elements. The region (cf. Fig. 3) 
considered is bounded by the saturation line and by the temperature of 7OO”F, 
while the pressure assumes values between 2000 and 2500psia. The boundary 
ABCD of the region d is divided into 4 curvilinear segments AB, BC, CD, DA. 
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In this particular case, three boundary curves are straight lines while the remaining 
one, AB is the curved saturation line. 

The next step in the development of the algorithm is the parametrization of 
the boundary segments as shown on Table II. By using linear blending functions 

TABLE II 
Parametrization of Boundary Segments (T(0, t) is a linear spline with 6 nodes) 

Parameters s/t Pressure Temperature Segment 

s 
I 
t=O P(s, 0) = 2000 T(s, 0) = 700s + (1 - s)635.8 AD 

Variable t = 1 P(s, 1) = 2500 T(s, 1) = 700s + (1 - s)668.1 BC 

P(0, t) = 2500t + (1 - t)*2000 no, t> = Tsaturation AB 
P(1, t) = 2500t + (1 - t)*2000 T(1, t) = 700 CD 

in accordance with (3), &,(s) = 1 - S; &) = S; &,(t) = 1 - t; &(t) = t; 
temperature and pressure can be written in the form of the Eq. (6) as 

P(s, t) = (1 - s) P(0, t) + SP(1, t) + (1 - t) P(S, 0) + tP(s, 1) 
- [(l - S)(l - t) P(O,O) + (1 - S) tP(0, 1) + S(1 - t) P(l, 0) 
+ WL 111 (13) 

T(s, t) = (1 - s) T(0, t) + sT(1, t) + (1 - t) T(s, 0) + tqs, 1) 
- [(l - S)(l - t) T(0, 0) + (1 -8) tT(O, 1) + S(1 - t) T&O) 
+ ml, 01. (14) 

By substituting expressions from Table II into Eqs. (13) and (14) and solving for s 
and t, respectively, one obtains 

J-v, 0 - m4 0) 
t = P(1, 1) - P(O,O) 

m t) - w4 t> 
s = T(1, t) - T(0, t) ’ 

(15) 

(16) 

where P(0, t) and T(s, t) are known, given values, of the pressure and temperature. 
This closed form of the expressions (15) and (16) was obtained because of the 
special form of the domain B and because of the linear parametrization of the 
temperature and pressure along the three straight line boundary segments. In 
general, a system of nonlinear equations (13) and (14) has to be solved iteratively 
for s and t. This was the case when the domain 8 was plotted in the temperature- 
enthalpy plane and transfinite interpolation used to determine pressure (cf. Fig. 4). 
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When s and t are known, they are used in the expression for the enthalpy. 
Again, linear blending functions are used: 

H(s, t) = (1 - s) H(0, t) + sH(1, t) + (1 - t) H(s, 0) + tH(s, 1) 
- [(l - s)(l - t) H(0, 0) + (1 -s) tH(0, 1) + s(l - t) H(1,O) 

+ SW, 01. (17) 

Here functions H(0, r), H(1, t), H(s, 0) and H(s, 1) are the enthalpies corresponding 
to the parametrization of the temperature and pressure. Namely, H(0, t) is the 
enthalpy at the saturation, H(1, t) is the enthalpy vs. pressure at 700”F, H(s, 0) 
is the enthalpy vs. temperature at 2000 psia and H(s, 1) is the enthalpy vs. tempera- 
ture at 2500 psia. The enthalpy data on the boundary of 8 can be approximated 
and stored as linear splines, cubic splines, etc., or supplied as a dense set of points 
calibrated in accordance with the anticipated values that s and t will be allowed 
to achieve in any table look-up. 

From this development, it is obvious that the entropy or specific volume of 
superheated steam can be readily written in the form of the Eq. (17). Only four 
additional parametrized boundary curves are needed for each new property. 

In summary, the algorithm can be outlined. 

1. Determine the desired range of temperatures and pressures (domain &), 
2. Divide the boundary of the domain d into four curvilinear segments, 
3. Parametrize the boundary, that is, determine independent variables (e.g. 

T and P) as a function of s, t, along each boundary segment, 
4. Solve Eqs. (13) and (14) for s and t, 
5. Calculate dependent variable (say enthalpy) by means of linear blending 

functions (17). 

5. EXAMPLES 

For the region in Fig. 3 the enthalpy was approximated using (17) where 6 data 
points were used along the curved saturation line AB, and 5, 6, and 8 data points 
along the straight boundary segments BC, CD, and AD, respectively. That is, 
from a total of 21 values (designated by an asterisk in Table I) of (P, T, H), the 
enthalpy H as a function of pressure and temperature is determined by (17). 

To test the accuracy of approximation, the exact values from the steam tables 
were used for comparison. Specifically, at T = 680°F and P = 2300 psia the 
table value of enthalpy is 1171.5 BTU/lb. The interpolated value using (17) was 
1171.312 for a relative error of 0.0135 %. The relative error appears to range 
over d from 0.0032 % to 0.0963 % for this domain. 
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The tensor product bilinear interpolant (cf. (5)) for the patch determined by 
4 data points T = 670”F, 690°F and P = 2200 psia and 2400 psia yield a relative 
error of 0.16 % which is slightly larger than the corresponding relative error for 
the blended interpolant. Note however that to construct such a piecewise tensor 
product interpolant would require utilizing roughly two and one-half times the 
data as with the blended interpolant, that is the entire 53 values of (7’, P, H) in 
Table I. 

In the second example a much wider range (80 < T < 700°F and 0.5 ,( P < 
2500 psia) was considered and enthalpy of superheated steam was approximated 
by using (17). In this case cubic splines were used to approximate curves T(0, t), 
H(0, t), H(1, t), while H(s, 0) and H(s, 1) were approximated by linear splines. 
To make this approach more attractive to the prospective users, minimal number 
of nodes for a given pointwise error was required for the spline approximation. 
For this purpose the node search program described in [6] was used. Nine, eight, 
and eight nodes were used to determine the cubic splines T(0, t), H(0, t), and 
H( 1, t) respectively. 

The accuracy of this approximation was tested and the results were compared 
to the ASME 1967 Steam Tables. Specifically, at T = 680°F and P = 2300 psia 
the table value of superheated steam enthalpy is 1171.5 BTU/lb. The interpolated 
value using (17), and combination of cubic and linear splines as described above 
was 1163.915 BTU/lb for a relative error of 0.65 %. 

We note that the cubic spline approximation of the T(0, t), H(0, t) and H(1, t) 
was accurate to approximately 0.05 ‘A. A better curve fit would yield more accurate 
results, as described in [9]. By using boundary values for T(0, t), H(0, f), H(1, f), 

etc., from the tables (no approximation) the error obtained was 0.12 %. 
To construct the linear blended approximant to enthalpy using spline approxi- 

mations to boundary data as described above involves 11 (Z’, P) data and 16 (H) 
data at the boundary points. In comparison, a tensor product bilinear interpolant 
based on, for example, increments of 10°F in temperature and 100 psia in pressure 
for the same domain d would require approximately 1100 values of (T, P, H) 
and would require ad hoc strategies near the saturation line. 

To make these techniques more versatile two additional routines were written. 
In the first routine any one thermodynamic parameter can be calculated from 
the other two, while in the second, for given pair of the independent variables 
three dependent variables can be calculated. Both approaches require minimal 
additional data in comparison with the basic case. 

When written in FORTRAN in the form of a function routine, this algorithm 
required approximately 600 words of storage (including 3 cubic spline approxi- 
mations). 
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7. CONCLUSION 

Blending function techniques were used to construct a transfinite domain 
transformation and to interpolate (approximate) steam and water properties. 
The method consists of mapping the unit square onto the region of interest in the 
temperature-pressure plane, for example, constructing the domain transformation 
and using linear blending functions to calculate the dependent variable. For 
specific regions the shape of the domain can be used to develop simple relationships 
which circumvent the necessity of solving nonlinear systems, enhancing speed of 
the calculations. Storage requirements for the technique are considerably less 
than for the existing tensor product schemes of comparable accuracy. 
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